home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
IRIX 6.2 Development Libraries
/
SGI IRIX 6.2 Development Libraries.iso
/
dist
/
complib.idb
/
usr
/
share
/
catman
/
p_man
/
cat3
/
complib
/
dgeqlf.z
/
dgeqlf
Wrap
Text File
|
1996-03-14
|
3KB
|
133 lines
DDDDGGGGEEEEQQQQLLLLFFFF((((3333FFFF)))) DDDDGGGGEEEEQQQQLLLLFFFF((((3333FFFF))))
NNNNAAAAMMMMEEEE
DGEQLF - compute a QL factorization of a real M-by-N matrix A
SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
SUBROUTINE DGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
INTEGER INFO, LDA, LWORK, M, N
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( LWORK )
PPPPUUUURRRRPPPPOOOOSSSSEEEE
DGEQLF computes a QL factorization of a real M-by-N matrix A: A = Q * L.
AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A. On exit, if m >= n, the lower
triangle of the subarray A(m-n+1:m,1:n) contains the N-by-N lower
triangular matrix L; if m <= n, the elements on and below the
(n-m)-th superdiagonal contain the M-by-N lower trapezoidal
matrix L; the remaining elements, with the array TAU, represent
the orthogonal matrix Q as a product of elementary reflectors
(see Further Details). LDA (input) INTEGER The leading
dimension of the array A. LDA >= max(1,M).
TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N). For optimum
performance LWORK >= N*NB, where NB is the optimal blocksize.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
PPPPaaaaggggeeee 1111
DDDDGGGGEEEEQQQQLLLLFFFF((((3333FFFF)))) DDDDGGGGEEEEQQQQLLLLFFFF((((3333FFFF))))
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
PPPPaaaaggggeeee 2222